Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332577
Title: DNA methylation at cytosine position 5
Author: Currie, Graeme M.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1992
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
DNA methylation appears to be involved in the regulation of gene expression. Transcriptionally inactive (silenced) genes normally contain a high proportion of 5-methyl-2'-deoxycytosine residues whereas transcriptionally active genes show much reduced levels. There appears good reason to believe that chemical agents capable of methylating 2'-deoxycytosine might affect gene expression and as a result of hypermethylating promoter regions of cytosine-guanine rich oncogenic sequences, cancer related genes may be silenced. This thesis describes the synthesis of a number of `electrophilic' S-methylsulphonium compounds and assesses their ability to act as molecules capable of methylating cytosine at position 5 and also considers their potential as cytotoxic agents. DNA is methylated in vivo by DNA methyltransferase utilising S-adenoxylmethionine as the methyl donor. This thesis addresses the theory that S-adenoxylmethionine may be replaced as the methyl donor for DNA methytransferase by other sulphonium compounds. S-[3H-methyl]methionine sulphonium iodide was synthesised and experiments to assess the ability of this compounds to transfer methyl groups to cytosine in the presence of DNA methyltransferase were unsuccessful. A proline residue adjacent to a cysteine residue has been identified to a highly conserved feature of the active site region of a large number of prokaryotic DNA methyltransferases. The thesis examines the possibility that short peptides containing the Pro-Cys fragment may be able to facilitate the alkylation of cytosine position 5 by sulphonium compounds. Peptides were synthesised up to 9 amino acids in length but none were shown to exhibit significant activity. Molecular modelling techniques, including Chem-X, Quanta, BIPED and protein structure prediction programs were used to assess any structural similarities that may exist between short peptides containing a Pro-Cys fragment and similar sequences present in proteins. A number of similar structural features were observed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID: uk.bl.ethos.332577  DOI: Not available
Keywords: Pharmacy Molecular biology Cytology Genetics
Share: