Use this URL to cite or link to this record in EThOS:
Title: The energetics of defects and impurities in metals and ionic materials from first principles.
Author: De Vita, Alessandro.
Awarding Body: University of Keele
Current Institution: Keele University
Date of Award: 1992
Availability of Full Text:
Access through EThOS:
The study of defects in metals and ionic solids has been the subject of great theoretical and experimental interest, in basic as well as applied research areas. The present work collects two series of calculations on the energetics of a variety of defective systems, in a metal host matrix (Al), and in two ionic oxides (MgO and Li20) . The energetics and the electronic ground state of the vacancy, of the self-interstitial, and of the hydrogen impurity systems in Al were investigated. The formation and migration energies of Schottky defects in MgO and Frenkel Defects in Li20 were also studied. All results are in close agreement with experiment, while the work gives new insight into the localisation of defects, the role played by lattice relaxation effects, and the defectinduced redistribution of valence electrons. The calculations are based on density functional and pseudopotential theory, make use the supercell approach, and employ in different implementations the conjugate gradients technique to minimise the total energy functional. For the calculations on oxides, we made use of a newly developed parallel computing methodology
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Solid-state physics Solid state physics