Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332225
Title: Delivery of phosphonoformate prodrugs
Author: Walker, Ian
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1992
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
AIDS dementia complex is a common neurological syndrome thought to result from the invasion of the CNS by HIV. Phosphonoformate has anti-HIV activity but due to its charged nature is excluded from the CNS by the blood-brain barrier. Lipophilic triesters of phosphonoformate designed to improve transport properties are unsuitable prodrugs due to their rapid and complicated hydrolysis, involving competitive P-O and P-C bond cleavage. Diesters, though hydrolytically stable, are considered too polar to passively diffuse into the CNS. Hydrophilic drugs mimicking endogenous nutrients are known to be actively transported across the blood-brain barrier. In this thesis the possibility that diesters of phosphonoformate may be actively transported is investigated. Triesters of phosphonoformate with labile aryl carboxyl esterrs were synthesised and their hydrolysis followed by 31P NMR spectroscopy. The triesters were found to undergo rapid hydrolysis via P-C bond cleavage to the phosphite. Phosphonoformate diesters designed to be analogues of actively transported -keto acids have been synthesised and fully characterised. Tyrosine-phosphonoformate and lipid-phosphonoformate conjugates have also been synthesised and characterised. An in vitro model of the blood-brain barrier utilising confluent monolayers of porcine brain microvessel endothelial cells grown on a permeable support has been established. The presence of enzyme and antigen markers specific to the blood-brain barrier has been demonstrated for the endothelial cells and the diffusional properties of the model investigated with hydrophilic and lipophilic compounds. Active transport systems for -keto acids and large amino acids have been identified in the endothelial cell monolayers using 14C-pyruvate and 3H-L-tyrosine respectively.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID: uk.bl.ethos.332225  DOI: Not available
Keywords: Pharmacy Pharmacology Chemistry, Organic Molecular biology Cytology Genetics
Share: