Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326481
Title: Development of a novel in vitro system for nasal drug delivery development
Author: Turner, Jonathan D.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 2000
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The work in this thesis represents the development of an in vitro model system in which the interior characteristics of the nasal cavity are closely represented, and solid or minimal volume dosage forms can be investigated. The complete nasal chamber consists of two sections: a lower tissue, viability chamber and an upper nasal chamber. The lower tissue viability chamber has been shown, using existing tissue viability monitoring techniques, to maintain the viability of a number of epithelial tissues, including porcine and rabbit nasal tissue, and rat ileal and Payers' patch tissue. The complete chamber including the upper nasal chamber has been shown to provide tissue viability for porcine and rabbit nasal tissue above that available using the existing Ussing chamber techniques. Adaptation of the complete system, and the development of the necessary experimental protocols that allow aerosol particle-sizing, together with videography, has shown that the new factors investigated, humidity and airflow, have a measurable effect on the delivered dose from a typical nasal pump. The system developed in this thesis has been shown to be flexible, in allowing the development of the confocal and particle-sizing systems. For future nasal drug delivery studies, the ability to measure such factors as the size of the delivered system in the nasal cavity, the depth of penetration of the formulation into the tissue are essential. Additionally, to have access to other data such as that obtained from drug transport in the same system, and to have the tissue available for histological examination represents a significant advance in the usefulness of such an in vitro technique for nasal delivery.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID: uk.bl.ethos.326481  DOI: Not available
Keywords: Pharmacy ; Biological Sciences Pharmacology
Share: