Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324491
Title: Energy simulation of climatic wind tunnel plant
Author: Roberts, E. C.
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2000
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The Climatic Wind Tunnel (CWT) is a facility used by the motor industry to test vehicles under climatic extremes without the need for expensive overseas test programs. This work focuses on the application of computer simulation to the Heating Ventilation and Air Conditioning (HVAC) plant that makes up a CWT facility. The objective being to reduce its operational costs through the identification of energy saving operational strategies. When in operation the CWT has a peak power consumption of 3MW. The implementation of any measures that would reduce this peak load would give rise to considerable savings in the operating costs of the facility. Computer simulation is an accepted technique for the study of systems operating under varying load conditions. Simulation allows rapid analysis of different strategies for operating plant and the effectiveness of achieving the desired effect without compromising the buildings performance. Models for the components of the CWT have been developed and coded in Neutral Model Format. These models have then been linked together in a modular simulation environment to give a model of the complete plant. The CWT plant naturally decomposesin to four major subsystems these being the test chamber, the soakroom, air make-up and refrigeration system. Models of all the primary and secondary HVAC plant are described as is how they constitute the systems that make up the CWT. Validation tests for individual components as well as for the systems have been carried out. To illustrate the potential of the application of computer simulation into finding improved modes of operation that would reduce the energy consumption of the facility, four studies have been carried out. The studies involve the possibility of scheduling the operation of condenser fans as a function of refrigeration load and outside ambient temperature, methods for the pre-test conditioning of a vehicle, a reduction in the secondary refrigerant flow temperature and an increase in the thickness of the insulated panels from which the facility is constructed. The studies carried out showed that there was potential for moderate energy savings to be made in the operation of the facility and that extended simulation runs would allow for the in-depth assessment of a large range of possible modes of plant operation in order to identify the areas where the greatest savings are possible.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.324491  DOI: Not available
Keywords: Computer simulation; Modelling; Motor vehicles Testing Laboratories Buildings Environmental engineering Heat engineering Refrigeration and refrigerating machinery Energy conservation Energy conservation
Share: