Use this URL to cite or link to this record in EThOS:
Title: Stylised procedural animation
Author: Yu, Jinhui
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 1999
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis develops a stylised procedural paradigm for computer graphics animation. Cartoon effects animations - stylised representations of natural phenomena - have presented a long-standing, difficult challenge to computer animators. We propose a framework for achieving the intricacy of effects motion with minimal animator intervention. Our approach is to construct cartoon effects by simulating the hand-drawing process through synthetic, computational means. We create a system which emulates the stylish appearance, movements of cartoon effects in both 2D and 3D environments. Our computational models achieve this by capturing the essential characteristics common to all cartoon effects: structure modelling, dynamic controlling and stylised rendering. To validate our framework, we have implemented a cartoon effects system for a range of effects including water effects, fire, smoke, rain and snow. Each effect model has its own static structure such as how the different parts are related temporarily. The flexibility of our approach is suggested most evidently by the high-level controls on shape, colour, timing and rendering on the effects. Like their hand-drawn counterparts, they move consistently while retaining the hand-crafted look. Since the movements of cartoon effects are animated procedurally, their detailed motions need not be keyframed. This thesis therefore demonstrates a powerful approach to computer animation in which the animator plays the role of a high level controller, rather than the more conventional hand-drawing slave. Our work not only achieves cartoon effects animation of un-precedented complexity, but it also provides an interesting experimental domain for related research disciplines toward more creative and expressive image synthesis in animation.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA75 Electronic computers. Computer science