Use this URL to cite or link to this record in EThOS:
Title: Optical polarimetry studies of Seyfert galaxies
Author: Felton, Michelle Ann
ISNI:       0000 0001 3459 1425
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 1999
Availability of Full Text:
Access through EThOS:
Access through Institution:
Optical imaging polarimetry has been performed on seven nearby Seyfert galaxies, three with face-on and four with edge-on host galaxies of various morphological classifications. Observations in V, R, B and H(_a) wavebands are presented as maps of total intensity and of polarized intensity, overlaid with polarization vectors. Independent determinations of the interstellar polarization (ISP) contribution from our own galaxy are made where possible, and are used to produce ISP corrected maps. The polarization patterns seen in the maps show evidence of either dichroic extinction, which indicates the presence of non-spherical dust grains in large-scale galactic magnetic fields, or scattering, which is due to the illumination of regions of dust grains or electrons. The polarization features, which are observed at the different wavebands, are then compared to recent models of polarization in external galaxies. Estimates of the intrinsic Seyfert nuclear polarization are made where possible by correcting for ISP and for an approximation of the dilution due to the host galaxy flux by using values from previous studies. Both the measured and the corrected nuclear polarizations are compared with previously published values, and are discussed in the context of the standard models of Seyfert galaxies. Most of the observed galaxies show evidence of polarization, both from the host galaxy and from the intrinsic Seyfert nucleus. In particular, distinct polarization features: bands of polarization consistent with extended dusty disks aligned with the dusty tori proposed in Seyferts, and regions of polarization corresponding to scattering of the nuclear continuum along the biconical extended Seyfert emission-line regions, have been identified in several of the observed galaxies.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Spiral galaxies; Optical polarization Astronomy