Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318309
Title: The NMR proton relaxation effectiveness of paramagnetic metal ions and their potential as MRI contrast agents
Author: Waiter, Gordon David
ISNI:       0000 0001 2451 0513
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 1995
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Paramagnetic lanthanide ions have been investigated as possible MIR phantom materials and contrast agents. The aim of this study is to determine if it is possible to apply the well known Solomon-Bloembergen equations to solutions of paramagnetic lanthanide ions that have fast electron spin relaxation times, compared to Gadolinium, the most widely used ion for NMR. Studies of the relaxivity, frequency and temperature dependence, show that there is a considerable difference in those properties over the series. Chelation of the ions to EDTA and DTPA resulted in a decrease in the relaxivity which was directly proportional to the decrease in the number of water molecules in the inner co-ordination sphere. The fit of the Solomon-Bloembergen equations to the variable frequency and temperature relaxation times showed that theory is valid for the fast electron spin ions and allowed the calculation of the electron spin relaxation times. This showed that there is a difference of 5 orders of magnitude between Gadolinium, the ion demonstrated to have a slow electron spin relaxation time, and the remaining ions. The addition of EDTA chelated forms of these ions to agarose gels produced NMR phantom materials with relaxation time characteristics that could be chosen to fulfil a desired application. The biodistribution of Gd-DTPA was investigated using ESR and NMR. The concentration of Gd-DTPA in excised rat tissue, 20 minutes after intraperitoneal injection, was determined, by the change in NMR water proton relaxation time from that of a control tissue, and by ESR from direct measurement of the microwave power absorbed by the sample, which is directly proportional to the number of unpaired electron spins in the sample. The results from these two methods of determining contrast agent concentration agree well with each other both in the order of biodistribution and on the absolute concentrations.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.318309  DOI: Not available
Keywords: Paramagnetic lanthanide; NMR phantom material Biomedical engineering Biochemical engineering Solid state physics
Share: