Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311910
Title: The control of metal-nInGaAs and nInAlAs interfaces by cryogenic processing
Author: Cammack, Darren S.
ISNI:       0000 0001 3515 290X
Awarding Body: Sheffield Hallam University
Current Institution: Sheffield Hallam University
Date of Award: 1999
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The physical and chemical properties of In- and Au- interfaces with In[0.53]Ga[0.47]As/InP(100) and In[0.52]Al[0.48]As(100) formed at room and low temperatures have been studied. Current-voltage measurements have indicated that In contacts to Ino[0.53]Ga[0.47]As(100) formed at 80K exhibit significantly higher Schottky barriers (&phis;b=0.45 eV) than In diodes formed at 294K (&phis;b=0.30 eV), whereas Au diodes formed on In[0.53]Ga[0.47]As(100) at either low temperature or room temperature exhibit Ohmic behaviour. The reactions occurring during interface formation at room and low temperatures have been investigated using soft X-ray photoemission spectroscopy (SXPS) and Transmission Electron Microscopy (TEM).The results presented show that In metallisation of In[0.53]Ga[0.47]As(100) at room temperature results in a predominantly three dimensional mode of growth, accompanied by the out-diffusion of As. Low temperature (125K) metallisation appears to reduce clustering and inhibit As out-diffusion. Examination of the resulting interfaces by TEM confirm the more uniform nature of the metal layers formed at low temperature. Metallisation temperature seems to have little effect on the formation of Au-In[0.53]Ga[0.47]As(100) interfaces, other than to reduce the extent of overlayer clustering, with As out-diffusion apparent for both low and room temperature Au deposition. Interfaces formed between In and In[0.52]Al[0.48]As(100) at both low and room temperature were relatively abrupt with no out-diffusion of substrate species into the metal overlayer. Low temperature metallisation again appeared to reduce overlayer clustering, with TEM studies showing a smaller grain size at low temperature. Au deposition onto In[0.52]Al[0.48]As(100) produced similar interfaces formed at room and low temperature. As diffuses into the Au overlayer to form an Au/As compound at both temperatures, resulting in an interface that is complex and reacted. The degree of overlayer clustering is also thought to be much less pronounced for Au deposition compared to In deposition. Barrier heights measured by SXPS during the study, show good agreement with reported current-voltage measurements for Au and In diodes formed on both In[0.53]Ga[0.47]As/InP(100) and In[0.52]Al[0.48]As(100). Possible mechanisms for the observed adaptation of the pinning position are discussed in the context of current models of Schottky barrier formation.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.311910  DOI: Not available
Keywords: INDIUM ARSENIDES; GALLIUM ARSENIDES; INDIUM PHOSPHIDES; ALUMINIUM ARSENIDES; PHOTOEMISSION; SCHOTTKY BARRIER DIODES; INTERFACES; MS SOLAR CELLS; TEMPERATURE DEPENDENCE; TEMPERATURE RANGE 0065-0273 K
Share: