Use this URL to cite or link to this record in EThOS:
Title: A metrological scanning force microscope
Author: Xu, Ying
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 1995
Availability of Full Text:
Access through EThOS:
Access through Institution:
In last decade, there has been a tremendous progress in scanning probe microscopies, some of which have achieved atomic resolution. However, there still exist some problems which have to be solved before the instrument can be used as a metrological measurement tool. The object of the project introduced in this thesis was to develop a scanning force microscope of metrological capability with the aim of making significant improvement in scanning force microscopy from the viewpoint of instrumentation. A capacitance based force probe has been studied theoretically and experimentally with the main concern being its dynamic properties, characterized by squeeze air film damping, which are believed to have direct effects on the fidelity of measurement. The optimization of design is investigated so as to achieve the results of both high displacement sensitivity and force sensitivity. An x-y scanning stage has been designed and built, which consists of a two axis linear flexure system of motion amplifying mode machined from a single aluminium alloy block. The stage is driven by two piezo actuators with two capacitance sensors monitoring the actual position of the platform to form a closed loop control system. The design strategy is introduced and the performances and characteristics of two commonly used types of flexure translation mechanisms, leaf spring and notch hinge spring system, are analyzed. The finite element analysis method is employed in the analysis and design of translation mechanism. Finally, a metrological scanning force microscope has been constructed, combining a constant force probe system, an x-y scanning stage and a 3D coarse positioning mechanism into a metrological system. The performance of the instrument system has been systematically evaluated and its measuring capability investigated on the. specimens of various properties and features. The results from this first prototype of the instrument demonstrated a subnanometer resolution with comparable stability and repeatability in all three axes.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QH Natural history Optoelectronics Measurement Solid state physics