Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307398
Title: Novel cationic polymers for use at biological interfaces
Author: French, Karen A.
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1996
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
One of the main problems with the use of synthetic polymers as biomaterials is the invasion of micro-organisms causing infection. A study of the properties of polymeric antibacterial agents, in particular polyhexamethylene biguanide, has revealed that the essential components for the design of a novel polymeric antibacterial are a balance between hydrophilicity and hydrophobicity coupled with sites of cationicity. The effect of cation incorporation on the physical properties of hydrogels has been investigated. Hydrogel systems copolymerised with either N-vinyl imidazole or dimethylaminoethyl methacrylate have been characterised in terms of their water binding, mechanical and surface properties. It has been concluded that the incorporation of these monomers does not adversely affect the properties of such hydrogels and that these materials are potential candidates for further development for use in biomedical applications. It has been reported that hydro gels with ionic character may increase the deposition of biological material onto the hydrogel surface when it is in contact with body fluids. An investigation into the deposition characteristics of hydrogels containing the potentially cationic monomers has been carried out, using specific protein adsorption and in vitro spoilation techniques. The results suggest that at low levels of cationicity, the deposition of positively charged proteins is reduced without adversely affecting the uptake of the other proteins. The gross deposition characteristics were found to be comparable to some commercially available contact lens materials. A preliminary investigation into the development of novel antibacterial polymers has been completed and some novel methods of bacterial inhibition discussed. These methods include development of an hydrogel whose potential application is as a catheter coating.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.307398  DOI: Not available
Keywords: Chemical Engineering ; Applied Chemistry ; Chemical Engineering Biomedical engineering Biochemical engineering Microbiology
Share: