Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305911
Title: The mechanochemical modification of polyolefins using reactive modifier systems
Author: Surry, I. R.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1990
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The principal objective of this work was to improve the mechanical properties of glass fibre reinforced polypropylene (PP) composites by the mechanochemical modification of the PP. The modification of the PP was carried out by reactive processing of the PP with a modifier in a Buss Ko-Kneader. Two main types of modifier were evaluated one type based on N-substituted maleimides the others based on 2-allylamino-4,6-dichloro-1,3,5-triazine (ACCT). The modification of the PP was carried out in two stages. Firstly the PP was reactively processed with the modifier and a free radical initiator. The objective of this stage was to bind the modifier to the PP. In the second stage the modified PP was reactively processed with the glass fibre. The objective in this stage was to form a chemical bond between the bound modifier and the silane coupling agent on the surface of the glass. Two silane coupling agents were evaluated these had a aliphatic chloro group and an aliphatic amino group respectively available for reaction with the modifier. The modifiers synthesised for this work had two main functional groups. The first was a double bond for free radical addition to the PP. The second was an organic group chosen for its potential reactivity to the silane coupling agent. A preliminary investigation was carried out using maleic anhydride (MA) as the modifier, this is reactive to the amino silane coupled glass. Studies of a commercially available system were also carried out for comparison purposes. During the work it was found that the amino silane coupled glass fibres produced, without any modification being made to the PP, mechanical properties comparable to the commercial system. Further any modification added to the amino silane system failed to improve the mechanical performance and in some cases acted in the opposite fashion. This failure was evident even when a chemical bond between glass fibre and PP could be shown. In the case of the chloro silane coupled glass fibres the mechanical properties of the composite without modification were poorer than those of the commercial system. It was found that the mechanical properties of these systems could be enhanced by the modifiers, however, no system tested significantly out performed the commercial system. Of the two modifier systems tested those based on the n-substituted maleimides were more successful at enhancing mechanical properties than those based on ACCT. This was attributed to the Poor chemical binding of the ACCT based modifiers to the PP. During the work it was found that several of the modifiers improved the properties of the PP when no glass fibres were present, particularly the % elongation and impact strength. It is possible that these modifiers could be used to improve the impact performance of PP, this may be of particular interest in recycling. These modifiers have only been tested for improving the properties of glass fibre composites. The N-substituted maleimide based modifiers could be used as compatibleisers for alloys of PP and other polymers. These could function by the formation of the bond with PP via the double bond whilst the group attached to the nitrogen atom could react with the alloying polymer.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID: uk.bl.ethos.305911  DOI: Not available
Keywords: Chemical Engineering ; Applied Chemistry ; Chemical Engineering Plastics Plastics Chemistry, Organic
Share: