Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305310
Title: Batch and continuous fermentation methods for the production of dextransucrase
Author: Pennell, R. D.
ISNI:       0000 0001 3482 9720
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1991
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The available literature concerning dextransucrase and dextran production and purification has been reviewed along with the reaction mechanisms of the enzyme. A discussion of basic fermentation theory is included, together with a brief description of bioreactor hydrodynamics and general biotechnology. The various fermenters used in this research work are described in detail, along with the various experimental techniques employed. The micro-organism Leuconostoc mesenteroides NRRL B512 (F) secretes dextransucrase in the presence of an inducer, sucrose, this being the only known inducer of the enzyme. Dextransucrase is a growth related product and a series of fed-batchfermentations have been carried out to extend the exponential growth phase of the organism. These experiments were carried out in a number of different sized vessels, ranging in size from 2.5 to 1,000 litres. Using a 16 litre vessel, dextransucrase activities in excess of 450 DSU/cm3 (21.67 U/cm3) have been obtained under non-aerated conditions. It has also been possible to achieve 442 DSU/cm3 (21.28 U/cm3) using the 1,000 litre vessel, although this has not been done consistently. A 1 litre and a 2.5 litre vessel were used for the continuous fermentations of dextransucrase. The 2.5 litre vessel was a very sophisticated MBR MiniBioreactor and was used for the majority of continuous fermentations carried out. An enzyme activity of approximately 108 DSU/cm3/h (5.20 U/cm3/h) was achieved at a dilution rate of 0.50 h-1, which corresponds to the maximum growth rate of the cells under the process conditions. A number of continuous fermentations were operated for prolonged periods of time, with experimental run-times of up to 389 h being recorded without any incidence of contamination. The phenomenon of enzyme enhancement on hold-up of up to 100% was also noted during these fermentations, with dextransucrase of activity 89.7 DSU/cm3/h (4.32 U/cm3/h) being boosted to 155.7 DSU/cm3 (7.50 U/cm3) following 24 hours of hold-up. These findings support the recommendation of a second reactor being placed in series with the existing vessel.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Phd
EThOS ID: uk.bl.ethos.305310  DOI: Not available
Keywords: Applied Chemistry ; Chemical Engineering Biomedical engineering Biochemical engineering Microbiology Biochemistry
Share: