Use this URL to cite or link to this record in EThOS:
Title: High resolution polarimetric imaging of biophysical objects using synthetic aperture radar
Author: Brown, Sarah Caroline Mellows
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 1998
Availability of Full Text:
Access through EThOS:
Access through Institution:
A synthetic aperture microwave near-field system is used to image biophysical objects in order to investigate the nature of radar-target interaction. Two different imaging algorithms for focusing data collected over a two-dimensional planar aperture are investigated. The first of these is the single frequency backward propagation technique which is mathematically simple to implement and provides a high degree of resolution. Secondly, a multifrequency development of the backward propagation algorithm is presented and derived from two separate perspectives. This latter algorithm, known as the auto-focusing algorithm, requires no information about the range of the target from the aperture. Full characterisation by simulation of both algorithms is carried out and different filtering techniques are investigated. The backward propagation algorithm is applied to the polarimetric imaging of three different leafless trees and a sugar beet plant at the X-band frequency of 10GHz. The images so produced demonstrate that the backscattered signal is dependent on the orientation of individual tree elements with respect to the polarisation. Furthermore, multiple scattering terms can be identified within the structure of the tree. The auto-focusing algorithm is applied to the polarimetric imaging of two trees at 10GHz and repeat measurements are made over several months. As with the single frequency measurements, the backscattered signal is dependent on the orientation of individual tree elements relative to the polarisation. The relative contributions from the leaves and branches of the trees to the backscattered signal are assessed and found to be seasonally dependent. Measurements are also carried out to investigate the variation of backscatter from a beech tree with varying incidence angle. It is demonstrated that at small angles of incidence, the leaves are the dominant source of backscatter but at large incidence angles, the branches and trunk of the tree have the greatest contrbution.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Imaging algorithms; Filtering techniques Pattern recognition systems Pattern perception Image processing Radar