Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300368
Title: Optical grating couplers in silicon-on-insulator
Author: Ang, Tze Wei
ISNI:       0000 0001 3424 4853
Awarding Body: University of Surrey
Current Institution: University of Surrey
Date of Award: 1999
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The aim of this project is to fabricate highly efficient grating couplers in thin-film silicon-on-insulator (SOI) wafers, which have a silicon (Si) thickness of the order of 1 mum. These thin-film waveguides allow the development of higher speed Si optical modulators, sensors and vertical surface coupling for Si light emitting diodes (LEDs), Hence, SOI rectangular and blazed grating couplers were fabricated where the buried oxide layer in SOI was designed as a reflective layer. The former gratings were fabricated by electron beam lithography followed by reactive ion etching, while the latter gratings were fabricated by angled argon ion beam etching. Both types of grating were designed at the diffraction order of -1, for a wavelength of 1.3 mum. The fabricated rectangular gratings have grating heights of 0.14, 0.23, 0.30 and 0.44 mum and a pitch of 0.40 mum whereas the sawtooth blazed gratings have a grating depth of 0.08 mum and a period of 0.38 mum To our knowledge, no Si blazed gratings with a pitch of less than 500 nm have been fabricated before. The SOI rectangular grating couplers yield a maximum output efficiency of 71 +/- 5 % towards the superstrate, while the blazed grating couplers produce an output efficiency of 84 +/- 5 % towards the substrate. These experimental output efficiencies are the highest yet reported in SOI for each grating profile, respectively. In addition, an optical loss of 0.15 +/- 0.05 dB/cm of Unibond SOI was measured for the first time. Furthermore, the experimental output efficiencies of the grating couplers with various grating heights were found to be consistent with perturbation theory. Thus, our aim of designing and fabricating an highly efficient thin film SOI waveguide grating coupler has been achieved. These grating couplers may enhance the applications of integrated optics in Si, and may allow the development of devices such as those mentioned above.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.300368  DOI: Not available
Keywords: DIFFRACTION GRATINGS; silicon; FABRICATION; FILMS; WAVEGUIDES
Share: