Use this URL to cite or link to this record in EThOS:
Title: The effect of VAM inoculation on interplant ¹⁵N transfer
Author: Ayub, Najma
ISNI:       0000 0001 3434 1055
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 1991
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
This thesis reports a study carried out to investigate the involvement of VA mycorrhizas in interplant 15N transfer in a model pasture system and in a model agroforestry system. Two pot experiments were designed to investigate the effect of VAM inoculation on 15N transfer from clover to rye grass in sterile (in the first experiment the sterilisation was by autoclaving and in the second, by gamma-irradiation) and fresh soil. A third pot experiment was designed to investigate the effect of VAM inoculation on 15N transfer from grass and clover to wild cherry seedlings in fresh soil. For these pot experiments donor plant seedlings were labelled with 15N by growing in Hoaglands solution containing K 15NO3 (5 atom % 15N). To study 15 N transfer and its possible mechanisms, plants and soil samples were analysed for 15N, total N (14N + 15N) and P concentrations. Rates of soil nitrogen mineralisation and nitrification, as well as 15N enrichment of available N were also determined to investigate N transfer through soil. There was transfer of 15N from donor to receiver in the simulated pasture system as well as in simulated agroforestry system. The transfer of 15N was increased by VAM inoculation. The transfer of 15N was small in relation to plant nutrition and was not associated with an increase in total N in the receiver plants although P concentrations were generally increased. There was no increase in the soil N fluxes of mineralisation and nitrification associated with enhanced 15N transfer from donor to receiver in the VAM inoculated system. In addition, there was often no increase in the 15N concentration in the soil available N pool of VAM inoculated systems. There was no evidence, therefore, of increased transfer of 15N through the soil in VAM inoculated systems with enhanced 15N interplant transfer, suggesting the likely involvement of VAM fungal hyphae. There was no marked effect on plant growth due to VAM inoculation. The growth of cherry, however, was reduced when grown with grass and this may have been due to N competition between the root systems. The growth of cherry seedlings was reduced to a lesser extent when grown with clover compared to when grown with grass. The findings of this study suggest that VA mycorrhizal hyphae play a part in interplant transfer of nitrogen. Although the study did not demonstrate high rates of 15N transfer in VAM inoculated system, circumstances are discussed where VAM interplant transfer of nutrients may become significant at the single plant, community and ecosystem level. The benefits to man of VAM mediated N transfer may be best realised in land use systems such as pastures having legumes and non-legumes, in mixed cropping of legumes and non-legumes and in an agroforestry system with a legume component, particularly when the soil is deficient in nutrients such as nitrogen and phosphorus.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Nitrogen uptake in plants Botany Soil science