Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287610
Title: Novel opto-electronic and plastic optical fibre sensors.
Author: Ioannides, Nicos.
Awarding Body: University of North London
Current Institution: London Metropolitan University
Date of Award: 1998
Availability of Full Text:
Access through EThOS:
Abstract:
The design and performance of a novel displacement sensor is investigated both theoretically and experimentally. This is an optical, extrinsic and differential sensor based on the inverse square law and is insensitive to source intensity variations. It can, in principle, be implemented using only opto-electronic components or it can incorporate optical fibres to allow for EMI free and remote operation. The sensor is implemented using Plastic Optical Fibres (POF) as these offer considerable advantages over glass fibres or glass fibre bundles. The sensor head consists of three POFs positioned side by side and displaced from each other parallel to the axis of the sensor head by a separation X, (mm). The middle POF is coupled to a red LED and emits light onto a flat target with the two outer fibres receiving the reflected light from the target and guiding it to two silicon PIN photodiodes. Theoretical investigations on the behaviour of the sensor are presented for ranges between 0 mm and 100 mm, and for targets with different reflectivities. Non-linearities in the form of a spike are shown to exist in the very short ranges resulting in a minimum operational range of about 15 nun Beyond this minimum range the sensor response is linear and depends on the reflectivity of the target, the accuracy of calibration between the two detectors, any offset voltage present in any of the detectors, possible errors on the detected signals and the X, separation which in principle can be used to scale the sensor. Experimental results obtained confirm the long and linear operational range of the sensor (between 15 mm and 90 mm for a mirror target and between 20 mm and 100 mm for a matt white paper target). Likely variations in the source light intensity do not affect the performance and accuracy of the sensor. Measurements performed with various X, separations verify the scalability feature of the sensor in that by increasing X, one can achieve longer operational ranges. Temperature variations up to 40 °c do not affect the linearity of response. Effects arising from angular misalignment of the target and! or the ends of the three POFs are also investigated and could be minimised by rotating the emitting POF. Matt white paper is concluded as the preferred type of target since it offers a longer linear operational range with less stringent alignment requirements as opposed to reflective targets. Operation of the sensor under ambient illumination conditions is demonstrated using suitable electronic circuitry with filtering facilities. The result is a linear operational range of 60 mm with 1 % accuracy with a matt white paper target. An automated version of the sensor under software control is also demonstrated for monitoring large amplitude (0.15 mm - 6 mm), single degree vibrations. The maximum determined frequency of the vibrating surface is about 150 Hz and this is only limited by the target displacement which is close to the resolution limits of this version of the sensor (0.15 mm). This novel sensor offers considerable advantages over other sensors reported in the literature. It is shown to offer a very long and linear operational range in excess of 100 mm, with accuracy better than 1% and resolution better than 0.2 % of range, and currently this performance is only limited by the electronic circuitry used. Overall, the proposed sensor offers a superior sensor head arrangement and performance combination and its cost is expected to be very low. Suggestions for improvements and other applications are offered.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.287610  DOI: Not available
Keywords: Optoelectronics Optoelectronics Optics
Share: