Use this URL to cite or link to this record in EThOS:
Title: Interactions at the clay/polymer/water interface
Author: Shewring, Nigel Ivor Edward
ISNI:       0000 0001 3404 7163
Awarding Body: Sheffield Hallam University
Current Institution: Sheffield Hallam University
Date of Award: 1998
Availability of Full Text:
Access from EThOS:
Access from Institution:
The thesis investigates the behaviour of aqueous montmorillonite suspensions and also the interactions between montmorillonite as a free standing film and in highly dispersed aqueous suspension with water soluble polymers used as additives in water based drilling fluids. FTIR microscopy and FTIR ATR spectroscopy have been employed to study in-situ dehydration of fully dispersed aqueous montmorillonite suspensions. The IR spectrum of the dispersed bentonite shows significant differences from that of a dry bentonite powder, which have been attributed to the hydration of the exchangeable cation. Drying, or concentrated salt solution causes the differences to disappear and this is attributed to the exchangeable cation settling back to its ditrigonal cavity in the silicate sheet of the mineral under these conditions. The adsorption of various molecular weights of neutral polyacrylamide (PAM) onto montmorillonite has been studied using FTIR transmission, ATR spectroscopy and XRD. Shifts seen in the NH[2] stretching and bending bands have been interpreted as being due to H-bonding with the outer co-ordination sphere of exchangeable cations. KCl has shown to have some influence on this system. Another neutral polymer used extensively in water based drilling fluids is polyalkylglycol (PAG). The adsorption of two molecular weights of this polymer from aqueous solutions of various concentrations have been monitored both in the presence and absence of KCl. The physical form of the montmorillonite (either as a free standing film or as a dispersed suspension), the concentration of the polymer solution, the polymer molecular weight and the presence of KCl all have significant effects on the adsorption of polymer. The stabilisation of montmorillonite films by PAG and PAG/KCl solutions has been monitored by ATR spectroscopy, and the dehydration of these films by polymer has been monitored using FTIR spectroscopy and XRD. The interaction of PAG is thought to be via hydrogen bonding with the innermost co-ordination sphere of the exchangeable cations which thus presents a hydrophobic surface to solvent molecules, preventing the film from collapse. Since all water based drilling fluids are multi-component systems, techniques previously used have been employed to study the competitive adsorption of the polyalkylglycol and polyacrylamide components. Preferential adsorption of the PAG is seen in these systems either due to the mass transport effects (PAG is considerably smaller than PAM) or due to PAG removing all but the inner cation hydration sphere, and presenting a hydrophobic surface for the PAM, and therefore preventing its adsorption.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Oil well drilling fluids