Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286050
Title: Macro and microclimate effects on cover zone properties of field cured concrete
Author: Al-Kindy, Adil
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 1998
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Three sets of concrete blocks were cast to investigate the effects of natural exposure conditions, at the macro and microclimate scale, and field curing on the performance and durability of OPC and OPCjGGBS concretes. These are termed the Loughborough winter series, the Loughborough summer series and the Muscat summer series. Three concrete mixes were investigated in the two Loughborough series (30 and 50 MPa OPC concrete mixes and a 30 MPa OPCjGGBS concrete mix) and two in the Muscat weather series (the two 30 MPa concretes). A group of specimens were cast with each mix consisting of 600 x 500 x 150mm concrete blocks plus control cubes and prisms. The samples were cured in-situ and exposed to a range of curing methods and microclimates. Surface zone properties (up to 50mm depth) were evaluated by air permeability, sorptivity, carbonation, thermogravimetry (TG) and mercury intrusion porosimetry (MIP) tests, conducted after 3 and 12 months of site exposure. The results revealed distinct variations due to macroclimate, microclimate, curing, concrete type and age. The air permeability, sorptivity and carbonation of the concrete exposed under moderate and rainy conditions of a Loughborough summer season were lower than identical concrete cast and cured during a very cold and dry Loughborough winter season. Further, the sorptivity of concrete subjected to the hot and dry climatic conditions of Muscat was significantly higher than companion samples subjected to the temperate Loughborough climate. Significant variations in properties were observed within the two sides of the same concrete element, each subjected to a different microclimate. The air permeability, sorptivity, carbonation and porosity were reduced with increased hessian curing duration. However, premature drying of wet hessian during curing had an adverse effect on concrete quality as this produced concrete of higher permeability and carbonation than non-cured concrete. The application of controlled permeability formwork was effective in improving the concrete's sub-surface properties. The curing affected zone (CAZ) extended to approximately 20mm below the surface of the concrete that was exposed to the Loughborough winter and summer climate, and 40-50mm for the concrete exposed to the Muscat climate, with notable variation in properties due to climate and curing. The TG and MlP results provided insights into the mechanisms associated with the variations in the three concrete's properties due to natural field exposure.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.286050  DOI: Not available
Keywords: Macroclimate ; Microclimate ; Exposure conditions ; Cover zone ; Curing ; Air permeability ; Sorptivity ; Carbonation ; Porosity ; Hydration Composite materials Building materials Construction equipment
Share: