Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282448
Title: Computer models of corrosion in passivating systems
Author: Phillips, Simon Sebastian
Awarding Body: University of Plymouth
Current Institution: University of Plymouth
Date of Award: 1995
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Analysis of corrosion in marine and acid environments is a complicated task, involving the interaction of thermodynamic, kinetic and geometrical factors. Two mathematical models which predict corrosion behaviour have been implemented for personal computers. The first program uses an assumption of unidirectional current flow to simplify the prediction of potential distributions for systems of essentially cylindrical geometry containing natural seawater-based electrolytes of differing strength. Using experimentally determined electrochemical and flow rig data, experimental and theoretical results were compared. The correlation between the two was shown to be poor, and this is attributed to the unrepresentative nature of the electrochemical data input to the model. The second model involves the synthesis of polarization curves. Several algorithms to model passivating behaviour have been studied, and one was selected and incorporated into the calculation routine. A number of kinetic and thermodynamic parameters are used in algorithms describing such behaviour, along with activation, concentration and solution polarization effects, for a number of redox reactions, which are then combined to produce an overall potential-log current density curve. Experimentally determined data for pure iron and different stainless steels in marine and acid environments of differing dissolved oxygen content and temperature were obtained. Theoretical models were constructed for each system, and compared to experimental data. Excellent correlation between experimental and theoretical data was obtained for potential ranges in excess of 2 V. Trends in parameter values were discussed, and compared to published data. The transition between stable and unstable passivity of stainless steels was shown to be dependent on the oxygen reduction diffusion limited current density and the iron dissolution reaction free corrosion current density, which in turn was linked to the dissolved oxygen content and temperature of the electrolyte. A new model for the behaviour of stainless steels in the transpassive region was proposed.
Supervisor: Not available Sponsor: School of Manufacturing, Materials and Mechanical Engineering, University of Plymouth
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.282448  DOI: Not available
Keywords: Galvanic corrosion; Stainless steel corrosion Materials Biodeterioration Computer-aided design
Share: