Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278586
Title: The stability of pharmaceutical powders: effect of additives and coating
Author: Mroso, Paul V.
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1982
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The decomposition of drugs in the solid state has been studied using aspirin and salsalate as models. The feasibility of using suspension systems for predicting the stability of these drugs in the solid state has been investigated. It has been found that such systems are inappropriate in defining the effect of excipients on 'the decomposition of the active drug due to chqnges in the degradation pathway. Using a high performance liquid chromatographic method, magnesium stearate was shown to induce the formation of potentlally immunogenic products in aspirin powders. These products which included salicylsalicylic acid .and acetylsalicyclsalicylic acid were not detected in aspirin suspensions which had undergone the same extent of decomposition. By studying the effect of pH and of added excipients on the rate of decomposition of aspirin in suspension systems, it has been shown that excipients such as magnesium stearate containing magnesium oxide, most probably enhance the decomposition of both aspirin and salsalate by alkalinising the aqueous phase. In the solid state, pH effects produced by excipients appear to be relatively unimportant. Evidence is presented to suggest that the critical parameter is a depression in melting point induced by: the added excipient. Microscopical examination in fact showed the formation of clear liquid layers in aspirin samples containing added magnesium stearate but not in control samples. Kinetic equations which take into account both the diffusive barrier presented by the liquid films and the. geometry of the aspirin crystals were developed. Fitting of the .experimental data to these equations showed good agreement. with the postulated theory. Monitorjng of weight issues during the decomposition of aspirin revealed that in the solid systems studied where the bulk of the decomposition product sublimes, it is possible to estimate the extent of degradation from the residual weight, provided the initial weight is known. The corollary is that in such open systems, monitoring of decomposition products is inadequate for assessing the extent of decomposition. In addition to the magnesium stearate-aspirin system, mapyramine maleate-aspirin mixtures were used to model interactive systems. Work carried out in an attempt to stabilise such systems included microencapsulation and film coating. The protection obtained was dependent on the interactive species used. Gelatin for example appeared to stabilise aspirin against the adverse effects of magnesium stearate but increased its decomposition in the presence of mapyramine maleate.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.278586  DOI: Not available
Keywords: Pharmacy
Share: