Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269511
Title: Valence losses at interfaces in aluminium alloys
Author: Maclean, Ewan Douglas William
ISNI:       0000 0001 3615 7016
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2002
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The aim of this project was to investigate EELS from two-layer systems and relate the results to the existing theory. Two systems were investigated, magnesium silicide platelets within an aluminium matrix and silicon precipitates within an aluminium matrix. Both systems were prepared through thermal treatment of a 6061 A1 alloy. The majority of the data presented in this thesis was acquired using EELS. However, energy dispersive x-ray spectroscopy (EDX) and electron microscopy were also used. EELS was performed on two different electron microscopes, the VG HB5 STEM and the FEI Tecnai TF20 (S)TEM. The bulk of the results were acquired on the HB5. To facilitate the comparison of theoretical and experimental results, the data was separated into bulk and interface components. The component amounts were then plotted against distance from the interface. Bessel functions were then fitted to this plot to give characteristic values. These values represented how well the optimal interface position had been chosen, the comparative decay of the interface plasmon on each side of the interface and the relative thickness of the bulk material. The experimental data from most of the interfaces examined indicated significant variations in the thickness of the sample. Despite this, the experimental results were found to follow the trend suggested by the theoretical equations. Analysis of the characteristic values indicated that the data from the HB5 and Tecnai for an interface showed a strong correlation. However, comparison of the experimental values with the theoretical reference showed a deviation of ~20%. Though the source of this deviation was not clear, a number of possible causes were investigated. Theoretical models were generated of systems with a variety of thickness profiles. In addition, systems containing steps, wide and narrow bulk plasmons and a thin interfacial layer of a third material were all considered. The deviation between the results from experiment and the simple theoretical model was believed to be consistent with the factors affecting EELS from a real interface. In particular, thickness variations and imperfections at the interface were found to be the most likely cause of the discrepancy between theory and experiment.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.269511  DOI: Not available
Keywords: QC Physics ; QD Chemistry Chemistry, Analytic
Share: