Use this URL to cite or link to this record in EThOS:
Title: Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes
Author: Gac, Arnaud
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2002
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (-850 °C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 °C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TK Electrical engineering. Electronics Nuclear engineering Electric apparatus and appliances Electronic apparatus and appliances Composite materials Solid state physics