Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266775
Title: Advanced handover procedure for cellular communication systems
Author: Ali, Ahmed H.
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1998
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Third Generation cellular communication systems are expected to support mixed cell architecture in which picocells, microcells and macrocells are used to achieve full coverage and increase the spectral capacity. Supporting higher numbers of mobile terminals and the use of smaller cells will result in an increase in the number of handovers, and consequently an increase in the time delays required to perform these handovers. Higher time delays will generate call interruptions and forced terminations, particularly for time sensitive applications like real-time multimedia and data services. Currently in the Global System for Mobile communications (GSM), the handover procedure is initiated and performed by the fixed part of the Public Land Mobile Network (PLMN). The mobile terminal is only capable of detecting candidate base stations suitable for the handover; it is the role of the network to interrogate a candidate base station for a free channel. Handover signalling is exchanged via the fixed network and the time delay required to perform the handover is greatly affected by the levels of teletraffic handled by the network. In this thesis, a new handover strategy is developed to reduce the total time delay for handovers in a microcellular system. The handover signalling is diverted from the fixed network to the air interface to prevent extra delays due to teletraffic congestion, and to allow the mobile terminal to exchange signalling directly with the candidate base station. The new strategy utilises Packet Reservation Multiple Access (PRMA) technique as a mechanism to transfer the control of the handover procedure from the fixed network to the mobile terminal. Simulation results are presented to show a dramatic reduction in the handover delay as compared to those obtained using fixed channel allocation and dynamic channel allocation schemes.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.266775  DOI: Not available
Keywords: Electronic Engineering Communication
Share: