Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265937
Title: The stability characteristics of laminated composite panels with cutouts.
Author: Bailey, Robert.
Awarding Body: University of Paisley
Current Institution: University of the West of Scotland
Date of Award: 1999
Availability of Full Text:
Access through EThOS:
Abstract:
Herein is contained details of a comprehensive finite element survey and experimental investigation into the buckling and postbuckling characteristics of thin laminated square Carbon-Epoxy panels with various cutout geometries, subjected to uniaxial compression. The plate edges are considered to be fully fixed with constant edge displacement loading. The panels were quasi isotropic in nature with a stacking sequence of (0/90/±45)2,. Square, circular and elliptical centrally located cutouts were considered with cutout dimension/panel widths ranging from 0.1 to 0.7 in increments of 0.1. Eccentrically located circular and square cutouts were considered for cutout dimension/panel width ratios ranging from 0.1 to 0.4 with vertical and horizontal eccentricity varying from 0 to 20% of the panels width. Multiple circular cutouts with cutout dimension/panel width ranging from 0 to 0.3 with separation distance/panel width ratios ranging from 0.2 to 0.65. A finite element eigenvalue analysis was adopted to determine the critical buckling loads and buckle mode shapes for the panels. The postbuckling response of the panels were investigated by adopting a non-linear finite element analysis approach using an Incremental Newton-Raphson Iterative solution scheme. A limited experimental test programme was undertaken to act as verification to the finite element solutions. A purpose built buckling rig was designed and manufactured for the purposes of the tests. It has been confirmed that the critical buckling loads for centrally located circular and square cutouts initially reduces as the cutout size increases. After reaching a minimum value it thereafter increases with large cutout sizes, the exact changeover point being dependant upon the shape of the cutout. The orientation of ellipse major axis significantly affects the critical buckling load of a panel. A horizontally aligned ellipse exhibits similar behaviour as that to a circular or square cutout. However when the major axis is rotated relative to the horizontal axis its buckling capacity reduces monotonically till it has a buckling load less than that for an unperforated panel when vertical aligned. It has been shown when a circular cutout is eccentrically placed in a panel, for small cutout sizes the buckling load reduces with horizontal eccentricity while a small increase is experienced for vertical eccentricity. Multiple circular cutouts significantly reduce the buckling capacity of the panel for all cutout sizes and separation distances. Initial geometric imperfection in the panel does not affect the critical buckling load significantly. The postbuckled response of such panels are also insensitive to the magnitude of imperfection. Panels with circular, square and elliptical cutouts exhibit substantial postbuckled strength. The post buckling response of such panels are insensitive to cutout geometry shape.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.265937  DOI: Not available
Keywords: Carbon-epoxy panels; Buckling; Carbon fibre Composite materials Plastics Plastics
Share: