Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264095
Title: Structure borne sound in motor-vehicles using statistical energy analysis
Author: Fraser, Grant
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 1998
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This Thesis is about the application of Statistical Energy Analysis (SEA) to the study of noise and vibration in motor vehicles. Methods for predicting the transmission of structural waves between body panels in motor cars are given. A complex joint technique based on the wave dynamic stiffness approach is discussed in detail. This technique can account for the complexities of the joint structures found in motor vehicles. Transmission of vibration energy between panels connected by a curved section of panel has been investigated using the complex joint modelling technique. Wave Intensity Analysis(WIA) and SEA were used to calculate the coupled panel vibration levels based on transmission coefficients calculated using the complex joint techniques. Energy Level Differences (ELDs) were measured for comparison with predicted results using laboratory models. SEA failed to accurately predict the ELDs except at low frequencies. However WIA was able to predicted the ELDs with reasonable accuracy using an existing expression for transmission at a panel corner joint. Two SEA models of a small passenger car have also been constructed. One assumes simpler joint configurations when calculating transmission coefficients and the other uses the complex joint technique. Panel ELDs were measured using a small passenger car. The SEA model using the complex joint method gives better agreement with measured ELDs than did the model using the simpler joints. saloon Sound Pressure Level (SPL) as a result of engine noise was measured. Both SEA models of the vehicle gave good agreement between measured and predicted Saloon SPL. A noise problem associated with exhaust misalignment is also investigated.
Supervisor: Steel, John Sponsor: Alexander Neilson Bequest
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.264095  DOI: Not available
Keywords: Motor vehicles/vibration Sound Vehicles
Share: