Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252334
Title: Expertise and the inversion effect
Author: Thomas, Lisa M.
Awarding Body: University of Surrey
Current Institution: University of Surrey
Date of Award: 2002
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
It has often been argued that the processing of faces is 'special' relative to the processing of other objects and there is much evidence in support of this notion. One source of evidence is the inversion effect, which occurs when faces presented upright are recognised significantly better than faces presented upside down. This effect of stimulus inversion has been shown to impair face recognition to a greater extent than for any other object class. It is this disproportionate effect that has been given as one source of evidence that face processing is special. However, other research has argued that effects of inversion can be found for non-face stimuli providing that there is sufficient development of expertise with them and that these stimuli can be defined by a common prototype. This thesis further explores this idea. Inversion effects were investigated for both prototypically and non-prototypically defined, abstract, chequerboard stimuli and compared with those for faces. When subjects learned to categorise chequerboard stimuli that were defined by a common prototype equal size inversion effects were found to those observed for faces. However, inversion effects were not observed for category training with multiple exemplars of chequerboard stimuli that were not defined by a common prototype. Together the findings are consistent with the idea that inversion effects are a general phenomenon resulting from the acquisition of category expertise with any prototype defined stimulus category. They undermine the inversion effect as a source of evidence for the specialness of face processing. Further, using a new Moving Windows technique, additional experiments investigated the underlying mechanisms responsible for the effects of inversion found for faces and chequerboards. These showed that the diagnostic image regions searched differ across the two stimulus classes. However, on the basis of the results, it is argued that the inversion effects found for both could result from impaired processing of second-order configural information.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.252334  DOI: Not available
Keywords: Face recognition
Share: