Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250965
Title: Visualisation and quantification of the defects in glass-fibre reinforced polymer composite materials using electronic speckle pattern interferometry
Author: Zhang, Zhong Yi
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 1999
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Non-destructive testing (NDT) of glass-fibre reinforced polyester (GRP) composite materials has been becoming increasingly important due to their wide applications in engineering components and structures. Electronic Speckle Pattern Interferometry (ESPI) has promising potential in this context because it is a non-contact, whole-field and real-time measurement system. This potential has never been fully exploited and there is only limited knowledge and understanding available in this area. This reality constrains the wide popularity and acceptance of ESPI as a novel NDT technique. Therefore it is of considerable importance to develop an understanding of the capability of ESPI with respect to damage evaluation in GRP composite materials. The research described in this thesis is concerned with an investigation into the applicability of ESPI in the NDT of GRP composite materials. Firstly, a study was carried out to determine excitation techniques in terms of practicality and effectiveness in the ESPI system. Three categories of defects were artificially introduced in GRP composite materials, namely holes, cracks and delaminations each with different geometrical features. ESPI was then employed to evaluate the three kinds of defects individually. It has been found that cracks and holes on back surfaces can be defined when the technique is used in conjunction with thermal excitation. Internal Temperature Differential (ITD) induced fringe patterns were more efficient than External Thermal Source (ETS) induced fringe patterns with regard to detecting the presence of holes and cracks. In the case of delamination, ESPI was found to be capable of detecting the damage when used in combination with mechanical excitation originating from a force transducer hammer. The geometrical features and magnitudes of delaminations were also established as being quantifiable. The validation of ESPI as an NDT technique was carried out in an attempt to establish a better understanding of its suitability and have more confidence in its applications. Four damaged specimens were Subjected to ESPI examination in conjunction with visual inspection, ultrasonic C-scan and sectioning techniques. The geometrical features and magnitudes of damage evaluated using ESPI showed a good correlation with those evaluated by conventional techniques. Poor visibility and readability is an inherent problem associated with ESP! due to an overlapping between the noise and signal frequencies. An improvement of image quality is expected in an attempt to achieve a wide acceptance of ESPI as a novel NDT technique. It has also been demonstrated that this problem can be tackled using optical phase stepping techniques in which optical phase data can be extracted from the intensity fringes. A three-frame optical phase stepping technique was employed to produce the "wrapped" and "unwrapped" phase maps which are capable of indicating internal damage with high visibility and clarity. Finally ESPI was practically employed to evaluate damage in GRP composites introduced by quasi-static and dynamic mechanical loading. It was found that ESP! was capable of monitoring the progressive damage development of specimens subjected to incremental flexural loading. The initial elastic response, damage initiation, propagation and ultimate failure of specimens were clearly characterised by the abnormal fringe pattern variations. In a similar manner, ESPI was employed to evaluate the low velocity falling weight impact induced damage. A correlation was established between the magnitude of damage and the impact event parameters as well as the residual flexural properties.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.250965  DOI: Not available
Keywords: ESPI ; NDT ; NDE ; GRP composites ; ESPSI ; Phase stepping technique ; Optical phase map ; Defects ; Damage ; Fringe patterns ; Ultrasonic C-scan ; Instrumented low velocity impact testing ; Flexural testing ; Sectioning techniques Plastics Plastics
Share: