Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244772
Title: Mathematical modelling of subglacial drainage and erosion
Author: Ng, F. S. L.
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1998
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The classical theory of channelized subglacial drainage,due orginally to Röthlisberger (1972) and Nye (1976), considers water flow in an ice channel overlying a rigid, impermeable bed. At steady flow, creep closure of the channel walls is counteracted by melt-back due to heat dissipation, and this leads to an equilibrium relation between channel water pressure and discharge. More generally, such a balance exhibits an instability that can be used to describe the mechanics of catastrophic flood events known as `jökulhlaups'. In this thesis, we substantiate these developments by exploring a detailed model where the channel is underlain by subglacial till and the flow supports a sediment load. Attention is given to the physics of bed processes and its effect on channel morphology. In particular, we propose a theory in which the channel need not be semi-circular, but has independently evolving depth and width determined by a local balance between melting and closure, and in which sediment erosion and deposition is taken into account. The corresponding equilibrium relation indicates a reverse dependence to that in the classical model, justifying the possibility of the subglacial canals envisaged by Walder and Fowler (1994). Theoretical predictions for sediment discharge are also derived. Regarding time-dependent flood drainage, we demonstrate how rapid channel widening caused by bank erosion can explain the abrupt recession observed in the flood hydrographs. This allows us to produce an improved simulation of the 1972 jökulhlaup from Grímsvötn, Iceland, and self-consistently, a plausible estimate for the total sediment yield. We also propose a mechanism for the observed flood initiation lake-level at Grímsvötn. These investigations expose the intimate interactions between drainage and sediment transport, which have profound implications on the hydrology, sedimentology and dynamics of ice masses, but which have received little attention.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.244772  DOI: Not available
Keywords: Geophysics ; Partial differential equations ; Approximations and expansions ; Fluid mechanics Glaciology Frozen ground Snow
Share: