Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237851
Title: Modelling and control of a hybrid stepping motor
Author: Barber, Graham R.
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1980
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The integration of a microprocessor and a medium power stepper motor in one control system brings together two quite different disciplines. Various methods of interfacing are examined and the problems involved in both hardware and software manipulation are investigated. Microprocessor open-loop control of the stepper motor is considered. The possible advantages of microprocessor closed-loop control are examined and the development of a system is detailed. The system uses position feedback to initiate each motor step. Results of the dynamic response of the system are presented and its performance discussed. Applications of the static torque characteristic of the stepper motor are considered followed by a review of methods of predicting the characteristic. This shows that accurate results are possible only when the effects of magnetic saturation are avoided or when the machine is available for magnetic circuit tests to be carried out. A new method of predicting the static torque characteristic is explained in detail. The method described uses the machine geometry and the magnetic characteristics of the iron types used in the machine. From this information the permeance of each iron component of the machine is calculated and by using the equivalent magnetic circuit of the machine, the total torque produced is predicted. It is shown how this new method is implemented on a digital computer and how the model may be used to investigate further aspects of the stepper motor in addition to the static torque.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.237851  DOI: Not available
Keywords: Electrical Engineering
Share: