Use this URL to cite or link to this record in EThOS:
Title: Gate controlled transport in a GaAs:AlGaAs heterojunction
Author: Thornton, T. J.
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 1987
Availability of Full Text:
Full text unavailable from EThOS. Please contact the current institution's library directly if you wish to view the thesis.
Optical and electron beam lithography has been used to fabricate high mobility GaAs:AlGaAs heterojunction FETs in which the current is controlled by Schottky barrier gates with novel geometries. The two dimensional electron gas (2DEG) at the heterojunction interface had a low temperature mobility of ~250,000 cm2V-1s-1 and a carrier concentration of 4.3x1011cm-2. Narrow channels of the 2DEG were defined by means of a split gate which consisted of two gold pads 15μm long, separated by ~1μm. A negative voltage applied to the gate removes carriers from beneath the gate resulting in a narrow channel in the gap. The channel width can be reduced to zero by further decreasing the gate voltage. At low temperatures (T ≤ 4.2K) the electron phase coherence length, Lφ, is greater than the width, W, and the transport is quasi one dimensional. Analysis of the low temperature magnetoconductance showed that for a channel of width ~450AA the phase coherence length varied as Lφsim 0.16μ m(T/K)^-0.35±0.06. A similar result was obtained from an analysis of the universal conductance fluctuations in channels of width ~ 1800AA. This suggests that the dominant electron scattering mechanism was due to electromagnetic fluctuations in the 2DEG for which Lφ would be expected to vary as T^-1/3. For high magnetic fields (O < B ≤ 8T) the magnetoconductance showed oscillations which were explained in terms of the magnetic depopulation of one dimensional subbands. A number of fine gate FETs were made with gate lengths of ~ 1000AA. The I-V characteristics of a strongly depleted channel were measured at 4.2K and it was found that I ∝V3/2 so that the current flow was dominated by space charge effects. For larger source drain biases I ∝ V and this was explained as being due to velocity saturation. The second voltage differential δ2V/δI2 showed structure at ~ 40meV and ~ 80meV and this was attributed to optic phonon emission by hot electrons.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Semiconductor physics