Use this URL to cite or link to this record in EThOS:
Title: Behaviour of footings for offshore structures under combined loads
Author: Santa Maria, Paulo Eduardo Lima de
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1988
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
The lack of knowledge about the behaviour of footings for jack-up rigs under storm loads poses a design problem which can be tackled by model testing. The areas of prime concern are the ultimate loads on footings under combined loading, which affects the safety of the rig, and the rotational stiffness, which affects the interaction between the foundation and the structure. A programme of loading tests was performed on model footings on clay, and was divided into two stages: monotonic loading and cyclic loading. The clay samples were obtained by consolidating Speswhite kaolin slurry in cylindrical tanks 450mm in diameter. The strength and compressibility characteristics of the samples were verified by means of standard laboratory tests. The model footings were 50mm and 100mm in diameter and several shapes were tested: circular flat plate, cones of various angles and model spud-cans. Loads and displacements were monitored using appropriate instrumentation and a data logger. A series of central vertical loading tests provided data for comparison with existing bearing capacity theories. Combined loading tests were performed applying a displacement controlled horizontal load at a fixed height above the footing which was also subjected to a fixed vertical load. The main series of tests involved a parametric study of the relevant variables. Special tests allowed the assessment of the effect of embedment of the footing and the interaction of a flexible leg with the foundation. Cyclic loading tests were carried out using a load controlled system which applied a sinusoidal load simulating wave action. Effects of currents were investigated by introducing an offset to the loading cycle. The influence of amplitude and period of loading as well as the influence of vertical load were also investigated. Special tests were carried out to cover some peculiarities of real loading conditions. Fitting of a three-parameter hyperbola to the test results provided a systematic and accurate method of analysis of monotonic loading tests, leading to valuable information involving stiffness and ultimate loads. Analysis of cyclic loading tests yielded useful qualitative information regarding the progress of settlement and the variation of rotational stiffness and damping ratio with the number of cycles.
Supervisor: Houlsby, G. T. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Engineering & allied sciences ; Civil engineering ; Geotechnical engineering ; Offshore foundations ; clay ; offshore ; foundation ; jack-up