Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233254
Title: Mutual diffusion in miscible polymer blends
Author: Jones, R. A. L.
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 1987
Availability of Full Text:
Full text unavailable from EThOS. Please contact the current institution's library directly if you wish to view the thesis.
Abstract:
Recent theories have suggested that mutual diffusion between miscible polymers may be strongly influenced by the unusual thermodynamics of mixing of high polymers; in addition the mobility properties of polymer blends are not, in general well understood. This dissertation describes experiments to investigate how these factors influence mutual diffusion in miscible polymer blends. After a general introduction and a review of some recent theories of mutual diffusion in polymer blends, experiments are described in one miscible blend system, Polyvinyl Chloride (PVC)/Polycaprolactone (PCL);x-ray microanalysis in a scanning electron microscope was used to measure the concentration dependence of the mutual diffusion coefficient. To explain this concentration dependence we need to invoke not only the thermodynamics of mixing but also the dependence on composition of the monometric friction coefficients in the system. This dependence was investigated using an ESR spin probe technique. The final section of the dissertation deals with an attempt to use the potentially powerful ion beam analysis techniques of Rutherford Backscattering (RBS) and Forward Recoil scattering (FReS) to measure mutual diffusion coefficients, as well as intradiffusion coefficients (whose concentration dependence should not be influenced by thermodynamic effects). Results obtained by these techniques are presented for three blend systems, including PVC/PCL; the results by RBS for the latter system are consistent with the results obtained by x-ray microanalysis.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.233254  DOI: Not available
Keywords: Polymer self-diffusion
Share: